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1. SIGNIFICANT FIGURES, ACCURACY AND PRECISION 
 

Physical quantities are measured in the laboratory with the help of various 
instruments. These instruments have scales with divisions. The digits that 
are read and estimated on the scale are called significant figures.  
 
Suppose the length AB of an object is measured with a meter stick (Fig. 1). The smallest 
subdivision on the meter stick is 1 cm. Point A is aligned with the 0 graduation mark and 
point B falls between the 7 and 8 graduation marks. Therefore the length AB is 
somewhere between 7 and 8 cm. A reasonable estimate is that B is located at 7.6 cm. Of  
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Figure 1. 
 
 
those two digits the first one is certain, the last one is doubtful. The length AB can 
therefore be given to two significant figures. The digit preceding the doubtful digit 
represents in general the smallest subdivision on the scale. If the length AB had been 
recorded as 7.65 cm, the impression would have been given that the scale of the ruler was 
divided into a tenth of a centimeter and that the point B was located between the 7.6 and 
the 7.7 graduation mark. Thus the length AB would be closer to the value of 7.65 cm than 



to 7.64 or 7.66 cm. More information is therefore given and there are now three 
significant figures. 
 
Very often in the process of calculations extra figures are accumulated and sometimes 
reported in the end result. This is a meaningless procedure. No figures should be 
included beyond the precision of the original data. In the case of random errors the 
root-mean-square error in the arithmetic mean (see following sections) determines the 
number of significant figures. As an example L = (2.56 ± 0.03) m and not L = (2.556 ± 
0.034) m or L = (2.56 ± 0.034) m. 
 
If a resistance of 105 Ω is written as 0.000105 MΩ, there are still only three significant 
figures. The resistance can namely also be written as 105 * 10-6 MΩ. A figure such as 
25600 has five significant figures. It means that the true value is located somewhere 
between 25601 and 25599. There are only three significant figures if the figure had been 
reported as 256 * 102. In this case the number has been specified to the nearest hundred. 
Some other examples are 
 

30.31 Four significant figures 
35 Two significant figures 
15.5 Three significant figures 
20.000 Five significant figures 
0.0001059 Four significant figures 
5.0001050 Eight significant figures 
 

In publications and reports the results of the measurements in the laboratory are given. 
However no measurement is ever made with absolute accuracy. For example, a number 
like the velocity of light, c, is an exact number. Rulers and stopwatches are used to 
measure the velocity of light. Since these instruments are not ideal and their scales cannot 
be read exactly, the resultant measured value of the velocity of light is not exact. The 
better the measuring instruments are, the more exact the resulting values of the velocity 
of light can be. 
 
A distinction should be made between accurate and precise measurements. A precise 
measurement of the velocity of light can yield a number with more significant figures, 
such as c = 3.09035 * 108 m/s. However this result is obviously wrong, that is, the result 
is not accurate. 
 
Precision is measured by the uncertainty in the end result and, for example, can be 
reported as follows 
 

c = (2.997925 ± 0.000003) * 108 m/s 
 

This means that if the measurement is repeated, the resulting value of c will have a 
certain probability to be located between 2.997928 * 108 m/s and 2.997922 * 108 m/s. The 
smaller the uncertainty the more precise the measurement is. 
 



Accuracy gives the closeness of the experimental results to the actual or correct value of 
the physical quantity. In contrast the precision is the closeness with which the 
measurements agree with one another. 
 
To be accurate the results should be precise, however a result that is precise does not 
need to be accurate. 
 
 

2. ERRORS OF OBSERVATION 
 

All measurements contain errors. A study of errors is therefore important as 
a step in finding ways to reduce them and also as a way of estimating the 
reliability of the final result of the experiment. 
 
There are two kinds of errors that are related to observations or measurements: 
 

1. Systematic errors 
2. Random errors 

 
Systematic errors are due to the wrong calibration or wrong construction of the 
instruments used in making the measurements. Also external conditions (such as 
temperature, humidity, magnetic fields) and observational errors can contribute to 
systematic errors. The results of the measurements are then consistently too large or too 
small. Careful planning of the experiment can in general eliminate systematic errors. 
 
On the contrary random errors are due to no known cause, they are of a statistical nature. 
They can be thought of being due to a large number of independent causes, producing 
small fluctuations in the measurements, and can result in equally too large or too small 
values of the measured quantity. 
 
If N measurements of the quantity x are made then the best estimate for x is the average 
or the mean of x1, x2, x3………, xN. That is 
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The differences 
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are called the deviations and indicate how much the ith measurement xi differs from the 
average x . The mean deviation is of course equal to zero. The standard deviation or root-
mean-square deviation of the N measurements of xi which characterizes the reliability of 
the measurements, is defined as  
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Finally the standard deviation of the mean or the root-mean-square error in 
the arithmetic mean of N measurements is given by 
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Equation (4) characterizes the uncertainty in the mean x  as being the best estimate for x. 
 
Table 1 gives an application of the above definitions. As an example the length L of a 
table is measured ten times with a meter stick. The smallest sub-division on the scale of 
the meter stick is one tenth of a meter. The measurements are tabulated in the second 
column of the table. The arithmetic mean of the length L and therefore the best estimate 
of the length L of the table is then given by 
 

N
L

L i∑=  = 2.556 m 

 
The deviations are given in the third column and the standard deviation is obtained from 
the fourth column. Finally the end result is quoted with its mean-square-error. 
 
 

Table 1 
 

Measurement # Li (m) Deviation di 2
id *1000 

1 2.52 -0.036 1.296 
2 2.69 +0.134 17.956 
3 2.46 -0.096 9.216 
4 2.58 0.024 0.576 
5 2.39 -0.166 27.556 
6 2.41 -0.146 21.316 
7 2.62 +0.064 4.096 
8 2.66 +0.104 10.816 
9 2.67 +0.114 12.996 

10 2.56 +0.004 0.016 
 5562.=L  10602 .=∑ id  

σ = 0.1 
α = 0.03 

)..( 030562 ±=L  m 



 
 
Occasionally a single measurement from a set of measurements differs widely from the 
others, so that the experimenter is tempted to discard the measurement. 
The average deviation 
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can be used in order to decide if an observation should be rejected or not. A simple rule 
to follow in such cases is 
 

(a) Calculate the deviation d for all the data including the suspected one. 
(b) If any deviation exceeds four times the average deviation as given by equation 5, 

the particular measurement can be rejected. The reason is that the probability of 
an error four times as large as the average error is about one in one thousand. 

 
 
3. THEORY OF ERRORS 
 
If a quantity x is measured a very large (infinite) number of times, the resulting values xi 
are distributed at random, assuming that the experiment has been set up in such a way 
that systematic errors have been eliminated. A plot of the measured values, xi, against the 
number of observations (frequency) of a particular value xi yields a so-called frequency 
distribution curve for the observations. 
 
There are a number of well-known frequency distributions. In the case of random errors 
in scientific measurements, the frequency curve is called the normal or Gaussian 
distribution (fig. 2). 
 

1.0

0.6

                                     - σ       x        + σ 

 



   Figure 2. 
 
This distribution is a bell-shape curve and can be presented by the normalized function 
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 is the mean of the distribution and σ, which is a measure of the width of the curve, is 
e standard deviation of the distribution. The curve (fig. 2) is symmetric about the 

arithmetic mean or average value x  of the measured values xi and it can be shown that 
for x = σ±x , y ≅ 0.607 times the maximum amplitude ( )/( πσ 21  of the curve at x = 
x . The a nder the curve represents the probability that ation will be falling 

to a given interval. The total area under the normalized curve is equal to one and 68% 
of the measured values, fall within one standard deviation σ of the mean, 95% fall within 
two standard deviations of the mean. Furthermore in a normal distribution half of the 
observations (50%) are located between 

rea u  an observ
in

σ67450.±x . 
 
 

4. PROPAGATION OF ERRORS 
 

 order to estimate the error in compound quantities, the following procedure is In
followed. If a number of measured quantities have arithmetic means x, y, and z with root-
mean-square errors of αx, αy, and αz respectively, then the root-mean-square error αF in 
any function F of x, y, and z is given by 
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xampleE : Suppose that you want to calculate the density of a solid. You have measured 

. LEAST-SQUARES FITTING OF A CURVE 

any experiments yield a series of pairs of data values. Usually the xi values are selected 

he method of least squares is used to fit a curve (find a theoretical equation) to a set of 

its mass 5.0 ± 0.2 kg and its volume 2.00 ± 0.08 m3. Calculate the density of the solid 
along with the error on its value. 
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M
and the yi values are measured. A graph is plotted with each pair (xi,yi) representing a 
point. If the points of the graph are located within a narrow band, the variables x and y 
are said to be correlated, and a relation exists between x and y. 
 
T
experimental data. First assume that a linear relation exists between y and x 
 



y = Ax + B                                                          (9) 

Substitution of x = xi will in general not give the value of yi. The “errors” will be 

y – yi = Axi + B – yi                                                   (10) 

To determine the best straight line which fits the N sets of data, A and B have to be

 

 

 
 

chosen so that the sum of the squares of the “errors” is least. This means that the 
simultaneous equations, obtained by taking the partial derivatives of (y – yi)2 with respect 
to A and B, should be solved. This condition leads then to the following results 
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In the case that the line goes through the origin (B = 0), it can be shown that 
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The correlation coefficient r provides an indicator of how good a fit the best straight line 
is, This coefficient is defined as 
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For r = 0 the values of x and y are independent of one another and there is no linear

 
If the relation between the two variables x and y is not linear, a polynomial of higher

owever the following function relations between x and y can be reduced to a linear 

 
correlation. The closer r is to +1 or to –1, the better the linear correlation is. 
 

 
order than 1 has to be fitted to the N data points (see reference 1 and 2). The coefficients 
can then be determined by the least square method as in the case of the linear 
relationship. 
 
H
relation 
 



1. Exponential curve  y = B exp (Ax) 

 

he comparison of the above curves with a straight line is summarized in the following 

Table 2 
 

 A B x y 

2. Logarithmic curve  y = B + A ln(x) 
3. Power curve   y = B xA 

 
 
 
 
 
 
 
 
T
table 
 
 

Linear 
+ B y = Ax 

A B x y 

Exponential 
y = B exp (Ax) 

A ln B x ln y 

Logarithmic 
y = B + A ln(x) 

A B ln x y 

Power 
Ay = B x

A ln B ln x ln y 
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